Harmonic Analysis of Polynomial Threshold Functions
نویسنده
چکیده
The analysis of linear threshold Boolean functions has recently attracted the attention of those interested in circuit complexity as well as of those interested in neural networks. Here a generalization of linear threshold functions is defined, namely, polynomial threshold functions, and its relation to the class of linear threshold functions is investigated. A Boolean function is polynomial threshold if it can be represented as a sign function of a polynomial that consists of a polynomial (in the number of variables) number of terms. The main result of this paper is showing that the class of polynomial threshold functions (which is called PT1 is strictly contained in the class of Boolean functions that can be computed by a depth 2, unbounded fan-in polynomial size circuit of linear threshold gates (which is called LT2). Harmonic analysis of Boolean functions is used to derive a necessary and sufficient condition for a function to be an S-threshold function for a given set S of monomials. This condition is used to show that the number of different S-threshold functions, for a given S, is at most 2 t'/ 1)lsl. Based on the necessary and sufficient condition, a lower bound is derived on the number of terms in a threshold function. The lower bound is expressed in terms of the spectral representation of a Boolean function. It is found that Boolean functions having an exponentially small spectrum are not polynomial threshold. A family of functions is exhibited that has an exponentially small spectrum; they are called "semibent" functions. A function is constructed that is both semibent and symmetric to prove that PT is properly contained in LT2.
منابع مشابه
Solution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملOn the harmonic index and harmonic polynomial of Caterpillars with diameter four
The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...
متن کاملPolynomial Threshold Functions, AC^0 Functions, and Spectral Norms
We study the class of polynomial threshold functions using harmonic analysis and apply the results to derive lower bounds related to ACo functions. A Boolean function is polynomial threshold if it can be represented as a sign function of a sparse polynomial (one that consists of a polynomial number of terms). Our main result is that the class of polynomial threshold functions can be characteriz...
متن کاملStability for certain subclasses of harmonic univalent functions
In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 3 شماره
صفحات -
تاریخ انتشار 1990